nonadic functions - definitie. Wat is nonadic functions
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is nonadic functions - definitie

CALCULUS IDENTITY
Inverse functions & differentiation; Inverse functions and differentiation
  • The think blue curve and the think red curves are inverse to each other. A thin curve is the derivative of the same colored think curve.

Inverse function rule:<br><math>{\color{CornflowerBlue}{f'}}(x) = \frac{1}{{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x))}</math><br><br>Example for arbitrary <math>x_0 \approx 5.8</math>:<br><math>{\color{CornflowerBlue}{f'}}(x_0) = \frac{1}{4}</math><br><math>{\color{Salmon}{(f^{-1})'}}({\color{Blue}{f}}(x_0)) = 4~</math>

Weierstrass elliptic function         
  • Visualization of the <math>\wp</math>-function with invariants <math>g_2=1+i</math> and <math>g_3=2-3i</math> in which white corresponds to a pole, black to a zero.
CLASS OF MATHEMATICAL FUNCTIONS
Weierstrass elliptic functions; Modular discriminant; Weierstrass P function; ℘; Weierstraß ℘ function; Weierstrass P-function; Weierstrass p; Weierstrass' elliptic function; Weierstrass's elliptic function; Weierp; Weierstrass p function; Weierstraß p function; Weierstrass P; Weierstrass p-function; P-function; P-functions; Weierstrass's elliptic functions
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass.
Even and odd functions         
  • The [[cosine function]] and all of its [[Taylor polynomials]] are even functions. This image shows <math>\cos(x)</math> and its Taylor approximation of degree 4.
MATHEMATICAL FUNCTIONS
Odd function; Odd functions; Even function; Even functions; Even/odd function; Odd and even functions; Even–odd decomposition; Even part of a function; Odd part of a function; Even-odd decomposition
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory of power series and Fourier series.
Aggregate function         
TYPE OF FUNCTION IN DATABASE MANAGEMENT
Aggregation functions; Decomposable aggregation function; Aggregation function; Aggregation Functions; Aggregate functions
In database management, an aggregate function or aggregation function is a function where the values of multiple rows are grouped together to form a single summary value.

Wikipedia

Inverse function rule

In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f 1 {\displaystyle f^{-1}} , where f 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ( x ) = y {\displaystyle f(x)=y} , then the inverse function rule is, in Lagrange's notation,

[ f 1 ] ( a ) = 1 f ( f 1 ( a ) ) {\displaystyle \left[f^{-1}\right]'(a)={\frac {1}{f'\left(f^{-1}(a)\right)}}} .

This formula holds in general whenever f {\displaystyle f} is continuous and injective on an interval I, with f {\displaystyle f} being differentiable at f 1 ( a ) {\displaystyle f^{-1}(a)} ( I {\displaystyle \in I} ) and where f ( f 1 ( a ) ) 0 {\displaystyle f'(f^{-1}(a))\neq 0} . The same formula is also equivalent to the expression

D [ f 1 ] = 1 ( D f ) ( f 1 ) , {\displaystyle {\mathcal {D}}\left[f^{-1}\right]={\frac {1}{({\mathcal {D}}f)\circ \left(f^{-1}\right)}},}

where D {\displaystyle {\mathcal {D}}} denotes the unary derivative operator (on the space of functions) and {\displaystyle \circ } denotes function composition.

Geometrically, a function and inverse function have graphs that are reflections, in the line y = x {\displaystyle y=x} . This reflection operation turns the gradient of any line into its reciprocal.

Assuming that f {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} and have a derivative given by the above formula.

The inverse function rule may also be expressed in Leibniz's notation. As that notation suggests,

d x d y d y d x = 1. {\displaystyle {\frac {dx}{dy}}\,\cdot \,{\frac {dy}{dx}}=1.}

This relation is obtained by differentiating the equation f 1 ( y ) = x {\displaystyle f^{-1}(y)=x} in terms of x and applying the chain rule, yielding that:

d x d y d y d x = d x d x {\displaystyle {\frac {dx}{dy}}\,\cdot \,{\frac {dy}{dx}}={\frac {dx}{dx}}}

considering that the derivative of x with respect to x is 1.